Cutaneous temperature sensitivity was tested in 13 male subjects prior to, during and after they breathed either a hypocapnic hypoxic (HH), or a normocapnic hypoxic (NH) breathing mixture containing 10% oxygen in nitrogen. Normocapnia was maintained by adding carbon dioxide to the inspired gas mixture. Cutaneous thresholds for thermal sensation were determined by a thermosensitivity testing device positioned on the plantar side of the first two toes on one leg. Heart rate, haemoglobin saturation, skin temperature at four sites (arm, chest, thigh, calf) and adapting temperature of the skin (T(ad); degrees centigrade), i.e. the temperature of the toe skin preceding a thermosensitivity test, were measured at minute intervals. Tympanic temperature (T(ty); degrees centigrade) was measured prior to the initial normoxic thermosensitivity test, during the hypoxic exposure and after the completion of the final normoxic thermosensitivity test. End-tidal carbon dioxide fraction and minute inspiratory volume were measured continuously during the hypoxic exposure. Ambient temperature, T(ty), T(ad) and mean skin temperature remained similar in both experimental conditions. Cutaneous sensitivity to cold decreased during both HH (P<0.001) and NH conditions (P<0.001) as compared with the tests undertaken pre- and post-hypoxia. No similar effect was observed for cutaneous sensitivity to warmth. The results of the present study suggest that sensitivity to cold decreases during the hypoxic exposure due to the effects associated with hypoxia rather than hypocapnia. Such alteration in thermal perception may affect the individual's perception of thermal comfort and consequently attenuate thermoregulatory behaviour during cold exposure at altitude.