The ultraviolet (UV) and high-energy visible blue (HEVB) light can cause damage to the eyes and skin. In this study, a cellulose composite film with UV and HEVB light shielding properties was prepared through the incorporation of a shielding agent into a carboxymethyl cellulose (CMC) solution. The shielding agent was synthesized through a Schiff base reaction between vanillin (VA) and 3-aminopropyltriethoxysilane (APS). The composite films exhibited excellent shielding performance against UV and HEVB light and maintained high visible light transmittance. Additionally, the films achieved shielding ratios of 100% for UV (200 to 400nm) and 93% for HEVB (400 to 450nm), respectively. Even under prolonged UV irradiation, the composite films maintained excellent shielding stability. The composite films exhibited higher performance in blocking UV and HEVB light than commercial shielding films. Moreover, the composite films achieved 100% antibacterial efficiency against both Staphylococcus aureus and Escherichia coli, even with minimal amounts of the shielding agent. Furthermore, the films exhibited significant improvements in thermal stability, oxidation resistance, and mechanical properties. The multifunctional UV and HEVB shielding films have broad potential applications in food packaging, anti-UV/HEVB radiation display screens, and mobile phone screens.
Read full abstract