The present investigation has put a focus on the hydromagnetic boundary layer unsteady flow of a nanofluid over a stretching sheet. A new heat flux model named Cattaneo-Christov is applied as the substitution of classical Fourier’s law. Buongiorno’s model is incorporated. The coupled non-linear transformed equations are solved numerically by using shooting technique with MATLAB bvp4c package. The obtained results are presented and discussed through graphs and tables in detail. Our results reveal that the unsteady parameter reduces all the three boundary layer thickness. The thermal relaxation parameter exhibits a non-conducting nature that makes the decline in fluid temperature.