Abstract

A theoretical investigation of a hydromagnetic boundary layer flow of Carreau fluid over a stretching cylinder with surface slippage and temperature jump is presented in this paper. It is assumed that heat transfer characteristics of the flow follows Cattaneo-Christov heat flux model base on conventional Fourier’s law with thermal relaxation time. The spectral relaxation method (SRM) is being utilized to provide the solution of highly nonlinear system of coupled partial differential equations converted into dimensionless governing equations. The behaviour of flow parameters on velocity, temperature distributions are sketched as well as analyzed physically. The result indicates that the temperature distribution decay for higher temperature jump and thermal relaxation parameters respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.