The simultaneous influence of the photoperiodic and temperature conditions on pre-diapause and postdiapause larval development of the ringlet Aphantopus hyperantus was studied. At the short day (12 h of light a day) all larvae reached the III instar and entered diapause at all the temperatures tested (18–24°C). At the long day (22 h) the number of diapausing larvae increased with decreasing temperature, and the larvae diapaused at the III and IV instars. The I and II instar larvae (before winter) developed and grew faster under short-day, and the hibernated larvae, under long-day conditions. At the short day the growth rate of the I and II instar larvae did not depend on the temperature, and at the long day it decreased as the temperature increased. After hibernation the growth rate of the IV instar larvae increased with the temperature under long-day conditions, and did not depend on the temperature under short-day ones. Thus, acceleration or deceleration of development, depending on the photoperiodic and temperature conditions, regulated the timing of diapause in the overwintering stage (the III instar larva) and maintained the univoltine seasonal cycle. The males of A. hyperantus developed and grew faster than females while their weight at the larval and pupal stages was smaller. The thermal reaction norms for development (the lower temperature threshold and the coefficient of thermal sensitivity of development) were calculated for the eggs, IV and V instar larvae, and pupae. The coefficient of thermal sensitivity of development for the IV and V instar larvae taken together was lower, and the threshold was higher than the corresponding values for eggs and pupae. The thermal reaction norms for development of the latter stages were the same. The larvae of A. hyperantus retained their sensitivity to the photoperiod after hibernation. Resumption of development after cold reactivation occurred only under long-day conditions, whereas under short-day ones the overwintered larvae entered a repeated diapause. The possibility of photoperiodic reactivation and the absence of spontaneous resumption of development in these larvae were demonstrated.
Read full abstract