Injection of particulate matter into a thermal plasma represents one of the approaches used in thermal plasma processing. The injected particles are usually treated as a dispersed phase, governed by the equation of motion and the rate equations for heat and mass transfer in Lagrangian coordinates. A stochastic approach is introduced to take particle dispersion into account due to turbulent fluctuations by randomly sampling instantaneous flow fields. Three-dimensional effects are also considered which are mainly due to particle injection and the presence of a swirl component. A modified approach for investigating noncontinuum effects on plasma-particle heat transfer is proposed, incorporating both electric and aerodynamic effects on the boundary layer around a particle immersed into a thermal plasma. Comparisons of theoretical predictions based on the present model with available experimental data are, in general, in reasonable agreement.
Read full abstract