The immense mass of organic carbon contained in sedimentary systems, currently estimated at 1.56×1010 Tg (Des Marais et al., 1992), bears the potential of affecting global climate through the release of thermally or biologically generated methane to the atmosphere. Here we investigate the potential of naturally-occurring gas leakage, controlled by petroleum generation and degradation as a forcing mechanism for climate at geologic time scales. We addressed the potential methane contributions to the atmosphere during the evolution of petroleum systems in two different, petroliferous geological settings: the Western Canada Sedimentary Basin (WCSB) and the Central Graben area of the North Sea. Besides 3D numerical simulation, different types of mass balance and theoretical approaches were applied depending on the data available and the processes taking place in each basin. In the case of the WCSB, we estimate maximum thermogenic methane leakage rates in the order of 10−2–10−3 Tg/yr, and maximum biogenic methane generation rates of 10−2 Tg/yr. In the case of the Central Graben, maximum estimates for thermogenic methane leakage are in the order in 10−3 Tg/yr. Extrapolation of our results to a global scale suggests that, at least as a single process, thermal gas generation in hydrocarbon kitchen areas would not be able to influence climate, although it may contribute to a positive feedback. Conversely, only the sudden release of subsurface methane accumulations, formed over geologic timescales, can possibly allow for petroleum systems to exert an effect on climate.
Read full abstract