Measured groundwater temperatures in the surficial zone are dependent on the properties of porous media and vertical flow velocity. Sensitivity analyses, collinear diagnostics and an inverse numerical solution to the one-dimensional heat-transport equation are used to determine which parameters can be estimated from temperature measurements in the surficial zone. This is done for heat transport in the saturated zone considering a constant vertical flow velocity. The use of temperature profiles, temperature time-series and temperature envelopes are considered. There is an important difference between a conduction and a convection dominated system. Sensitivity analysis shows that temperature measurements are sensitive to effective thermal conductivity and heat capacity and are insensitive to effective porosity and thermal dispersivity. In a conduction dominated system, temperature is also insensitive for vertical velocity. Collinear diagnostics show that in a conduction dominated system, only the combination of heat capacity and effective thermal conductivity, the thermal diffusivity, can be derived. In a convection dominated system, both the vertical velocity and the effective thermal conductivity can, theoretically, be derived.
Read full abstract