Poor air quality, particularly in urban areas, causes various diseases and degrades living standards. Air quality could be affected by emissions of odor, Volatile Organic Compounds (VOCs), and other gases. Therefore, assessment and monitoring of odorous air quality using sensitive, simple, rapid, accurate and portable tools is very important for public health. This study aimed to characterize odor emissions to detect malfunctions in facilities and to prevent air pollution and olfactory nuisance in the environment. A gas chromatographic method, in conjunction with sensorial analysis were performed for odorous air samples analysis collected from neighborhood of Meknes city (Morocco). Advanced multivariate statistical approaches, such as Principal Components Analysis (PCA), Discriminant Function Analysis (DFA), Support Vector Machines (SVMs), and Hierarchical Cluster Analysis (HCA), were used to describe samples similarities. The electronic nose (e-nose) data processing exhibits a satisfactory discrimination between the odorous air samples. Twenty-four VOCs with known molecular formulas were identified with Thermal Desorption-Gas Chromatography-Mass Spectrometry (TD-GC-MS). A validated Partial Least Square (PLS) model foresees good calibration between e-nose measurement and TD-GC-MS analysis. The finding indicates that TD-GC–MS approach in conjunction with e-nose unit could be suitable tool for environmental measurement-based odor emissions.
Read full abstract