A detailed investigation of the reliability aspects in nonvolatile phase-change memories (PCM) is presented, covering the basic aspects related to high density array NVM, i.e., data retention, endurance, program and read disturbs. The data retention capabilities and the endurance characteristics of single PCM cells are analyzed, showing that data can be stored for 10 years at 110/spl deg/C and that a resistance difference of two order of magnitude between the cell states can be maintained for more than 10/sup 11/ programming cycles. The main mechanisms responsible for instabilities just before failure as well as for final device breakdown are also discussed. Finally, the impact of read and program disturbs are clearly assessed, showing with experimental data and simulated results that the crystallization induced during the cell read out and the thermal cross-talk due to adjacent bits programming do not affect the retention capabilities of the PCM cells.