In the traditional mass concrete temperature field calculation, the accuracy of the thermal parameters is extremely important. However, the actual thermal parameters of mass concrete may have some errors with the laboratory-measured values or specification values due to the site ambient temperature, concrete surface insulation measures, cooling water flow, etc. Therefore, it can be combined with the measured temperature of the field temperature sensors using the sparrow search algorithm (SSA) for the inverse analysis of thermal parameters. Firstly, to address the problem that SSA has low convergence accuracy and easily falls into local optimum, a mixed strategy was adopted to improve the algorithm, including Logistic Chaos mapping initialization of the population, the introduction of adaptive weighting factors, and the use of the Cauchy mutation strategy. Then, the performance test was carried out to compare the performance of the algorithm with three different intelligent algorithms and reflect the superiority of the SSA that was improved by mixed strategies (SSAIMSs). Finally, the proposed method was applied to the thermal parameter inversion of a mass concrete pile cap. The inversion results demonstrated that SSAIMSs can improve the accuracy and speed of thermal parameter inversion, and the calculated results of the thermal parameters and temperatures obtained using the SSAIMSs matched well with the measured results in the field, which can meet the accuracy requirements of the actual engineering.
Read full abstract