Postmenopausal osteoporosis results from a pro-resorptive bone environment, which decreases bone mineral density causing increased fracture risk. Bone marrow derived mesenchymal stem/stromal cells (MSCs) secrete factors involved in bone homeostasis, but osteoporosis mediated changes to their secretions remain understudied. Herein, we examined the secretome of MSCs isolated from ovariectomized rats (OVX rMSCs), a model of post-menopausal osteoporosis, as a function of cell-cell interactions. Specifically, we controlled clustering of OVX and SHAM rMSCs by assembling them in granular hydrogels synthesized from poly(ethylene glycol) microgels with average diameters of ∼10, 100, and 200 µm. We directed both the sizes of rMSC clusters (single cells to ∼30 cells/cluster) and the percentages of cells within clusters (∼20–90%) by controlling the scaffold pore dimensions. Large clusters of OVX rMSCs had a pro-resorptive secretory profile, with increased concentrations of Activin A, CXCL1, CX3CL1, MCP-1, TIMP-1, and TNF-ɑ, compared to SHAM rMSCs. As this pro-resorptive bias was only observed in large cell clusters, we characterized the expression of several cadherins, mediators of cell-cell contacts. N-cadherin expression was elevated (∼4-fold) in OVX relative to SHAM rMSCs, in both cell clusters and single cells. Finally, TIMP-1 and MCP-1 secretion was only decreased in large cell clusters of OVX rMSCs when N-cadherin interactions were blocked, highlighting the dependence of OVX rMSC secretion of pro-resorptive cytokines on N-cadherin mediated cell-cell contacts. Further elucidation of the N-cadherin mediated osteoporotic MSC secretome may have implications for developing therapies for postmenopausal osteoporosis. Statement of significancePostmenopausal osteoporosis is a prevalent bone disorder that affects tens of millions of women worldwide. This disease is characterized by severe bone loss resulting from a pro-resorptive bone marrow environment, where the rates of bone resorption outpace the rates of bone deposition. The paracrine factors secreted by bone marrow MSCs can influence cell types responsible for bone homeostasis, but the osteoporosis-mediated changes to MSC secretory properties remains understudied. In this study, we used PEG-based porous granular scaffolds to study the influence of cell clustering on the secretory properties of osteoporotic MSCs. We observed increased secretion of several pro-resorptive factors by osteoporotic MSCs in large clusters. Further, we explored the dependence of this altered secretion profile on N-cadherin mediated cell-cell contacts.