Abstract

Follicle-stimulating hormone (FSH) accelerates osteoporosis in postmenopausal women, while the underlying mechanism remains uncharacterized. N6-methyladenosine (m6A) is one of the most important regulations in the development of osteoporosis. In this study, we aimed to investigate the role of FSH in m6A modification and osteoclast function. Here, we showed that FSH upregulated m6A levels in osteoclasts via stimulating methyltransferase-like 3 (METTL3) protein expression. FSH enhanced osteoclast migration, while the knockdown of METTL3 eliminated this enhancement. Both MeRIP-seq and RNA sequencing identified that cathepsin K (CTSK) is the potential downstream target of METTL3. Knockdown of CTSK reduced FSH-upregulated osteoclast migration. Furthermore, silencing METTL3 decreased CTSK mRNA stability. Finally, FSH induced phosphorylation of cyclic-AMP response element-binding protein (CREB), while silencing of CREB attenuated the effects of FSH on the promoter transcriptional activity of Mettl3 and CTSK/METTL3 protein. Taken together, these findings indicate that FSH promotes osteoclast migration via the CREB/METTL3/CTSK signaling pathway, which may provide a potential target for suppressing osteoclast mobility and postmenopausal osteoporosis therapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call