Alternating electric fields (AEFs) at intermediate frequencies (100–300 kHz) and low intensities (1–3 V/cm) have shown promise as an effective approach for inhibiting cancer cell proliferation. However, a noticeable research gap exists in comparing the biophysical properties of invasive and non-invasive AEFs methods, and AEFs delivery strategies require further improvement. In this study, we constructed a realistic head model to simulate the effects of non-invasive and invasive AEFs on malignant gliomas. Additionally, a novel method was proposed involving the placement of a return electrode under the scalp. We simulated the electric field and temperature distributions in the brain tissue for each method. Our results underscore the advantages of invasive AEFs, showcasing their superior tumor-targeting abilities and reduced energy requirements. The analysis of brain tissue temperature changes reveals that non-invasive AEFs primarily generate heat at the scalp level, whereas invasive methods localize heat production within the tumor itself, thereby preserving surrounding healthy brain tissue. Our proposed invasive AEFs method also shows potential for selective electric field intervention. In conclusion, invasive AEFs demonstrate potential for precise and effective tumor treatment. Its enhanced targeting capabilities and limited impact on healthy tissue make it a promising avenue for further research in the realm of cancer treatment.
Read full abstract