Ischemic stroke represents a highly perilous cerebrovascular disorder, involving a variety of complex pathophysiological mechanisms. OIP5 antisense RNA 1 (OIP5-AS1) is a long non-coding RNA (LncRNA) that has been shown to play a pivotal role in a variety of disease systems. However, there are relatively few studies on ischemic stroke. This research aimed to elucidate the direct impact of OIP5-AS1 on neuronal cells following cerebral ischemia-reperfusion. Our study revealed a significant reduction in OIP5-AS1 expression in mouse neurons following middle cerebral artery occlusion/reperfusion (MCAO/R). Overexpression of OIP5-AS1 in neurons inhibits neuronal apoptosis induced by cerebral ischemia-reperfusion injury (CIRI) and exerts a neuroprotective role. Mechanistically, OIP5-AS1 may play a neuroprotective role after CIRI by up-regulating the expression of TAK1 binding protein 2 (TAB-2), reducing neuronal mitochondrial damage, and inhibiting apoptosis. OIP5-AS1 may become a novel therapeutic target for ischemic stroke.
Read full abstract