Understanding the molecular characteristics of triple-negative breast cancer (TNBC) and developing more tailored treatment approaches is crucial. Circular RNAs (circRNAs), as potential therapeutic targets, remain largely unexplored in TNBC. This study utilized circRNA microarray analysis to determine the expression of circRNAs in TNBC, analyzing nine patient specimens. The characteristics of circBRAF were examined using divergent PCR primers, Sanger sequencing, fluorescence in situ hybridization (FISH) analysis, and the application of RNase and actinomycin D. The biological function of circBRAF in TNBC was further investigated through colony formation, tube formation, and transwell assays. Crucially, the mechanisms underlying the effects of circBRAF on TNBC progression were explored via RNA immunoprecipitation sequencing (RIP-seq) data, MS2 pulldown, RNA sequencing (RNA-seq) analysis, circBRAF knockdown, histone H3K9me3 modification, and Chromatin Isolation by RNA Purification (ChIRP) tests followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). We focused particularly on hsa_circ_0007178, produced from exons 4-13 of the oncogene BRAF. Functional experiments revealed that circBRAF is crucial for the development of TNBC, with its knockdown preventing angiogenesis, metastasis, and cell division in vitro. Mechanistically, circBRAF interacts with KDM4B and IGF2BP3, promoting TNBC growth. Interaction of circBRAF with IGF2BP3 increased the expression of VCAN, FN1, CDCA3, or B4GALT3 by controlling mRNA stability through RNA N6-methyladenosine (m6A) modification. Furthermore, circBRAF upregulated the expression of ADAMTS14 and MMP9 through recruitment of KDM4B to enhance respective H3K9me3 modification. Furthermore, overexpression of circBRAF was able to overcome the inhibitory effects of siKDM4B and siIGF2BP3 on cell migration and invasion. Our findings suggest that circBRAF may act as an oncogene in TNBC through its specific interactions with KDM4B and IGF2BP3, implying that circBRAF could serve as a potentially effective novel therapeutic target for TNBC.
Read full abstract