ObjectiveThe thoracic duct is the largest lymphatic vessel in the body, and carries fluid and nutrients absorbed in abdominal organs to the central venous circulation. Thoracic duct obstruction can cause significant failure of the lymphatic circulation (i.e., protein-losing enteropathy, plastic bronchitis, etc.). Surgical anastomosis between the thoracic duct and central venous circulation has been used to treat thoracic duct obstruction but cannot provide lymphatic decompression in patients with superior vena cava obstruction or chronically elevated central venous pressures (e.g., right heart failure, single ventricle physiology, etc.). Therefore, this preclinical feasibility study sought to develop a novel and optimal surgical technique for creating a thoracic duct-to-pulmonary vein lymphovenous anastomosis (LVA) in swine that could remain patent and preserve unidirectional lymphatic fluid flow into the systemic venous circulation to provide therapeutic decompression of the lymphatic circulation even at high central venous pressures. MethodsA thoracic duct-to-pulmonary vein LVA was attempted in 10 piglets (median age 80 [IQR 80–83] days; weight 22.5 [IQR 21.4–26.8] kg). After a right thoracotomy, the thoracic duct was mobilized, transected, and anastomosed to the right inferior pulmonary vein. Animals were systemically anticoagulated on post-operative day 1. Lymphangiography was used to evaluate LVA patency up to post-operative day 7. ResultsA thoracic duct-to-pulmonary vein LVA was successfully completed in 8/10 (80.0%) piglets, of which 6/8 (75.0%) survived to the intended study endpoint without any complication (median 6 [IQR 4–7] days). Initially, 2/10 (20.0%) LVAs were aborted intraoperatively, and 2/10 (20.0%) animals were euthanized early due to post-operative complications. However, using an optimized surgical technique, the success rate for creating a thoracic duct-to-pulmonary vein LVA in six animals was 100%, all of which survived to their intended study endpoint without any complications (median 6 [IQR 4–7] days). LVAs remained patent for up to seven days. ConclusionA thoracic duct-to-pulmonary vein LVA can be completed safely and remain patent for at least one week with systemic anticoagulation, which provides an important proof-of-concept that this novel intervention could effectively offload the lymphatic circulation in patients with lymphatic failure and elevated central venous pressures.
Read full abstract