For numerical semigroups with a specified list of (not necessarily minimal) generators, we obtain explicit asymptotic expressions, and in some cases quasipolynomial/quasirational representations, for all major factorization length statistics. This involves a variety of tools that are not standard in the subject, such as algebraic combinatorics (Schur polynomials), probability theory (weak convergence of measures, characteristic functions), and harmonic analysis (Fourier transforms of distributions). We provide instructive examples which demonstrate the power and generality of our techniques. We also highlight unexpected consequences in the theory of homogeneous symmetric functions.