Wavelet analysis has been a powerful tool for exploring and solving many complicated problems in natural science and engineering computation. In this paper, the notion of vector-valued multiresolution analysis is introduced and the definition of the biorthogonal vector-valued bivariate wavelet functions is given. The existence of biorthogonal vector-valued binary wavelet functions associated with a pair of biorthogonal vector-valued finitely supported binary scaling functions is investigated. An algorithm for constructing a class of biorthogonal vector-valued finitely supported binary wavelet functions is presented by virtue of multiresolution analysis and matrix theory.