Machine learning has become indispensable across various domains, yet understanding its theoretical underpinnings remains challenging for many practitioners and researchers. Despite the availability of numerous resources, there is a need for a cohesive tutorial that integrates foundational principles with state-of-the-art theories. This paper addresses the fundamental concepts and theories of machine learning, with an emphasis on neural networks, serving as both a foundational exploration and a tutorial. It begins by introducing essential concepts in machine learning, including various learning and inference methods, followed by criterion functions, robust learning, discussions on learning and generalization, model selection, bias–variance trade-off, and the role of neural networks as universal approximators. Subsequently, the paper delves into computational learning theory, with probably approximately correct (PAC) learning theory forming its cornerstone. Key concepts such as the VC-dimension, Rademacher complexity, and empirical risk minimization principle are introduced as tools for establishing generalization error bounds in trained models. The fundamental theorem of learning theory establishes the relationship between PAC learnability, Vapnik–Chervonenkis (VC)-dimension, and the empirical risk minimization principle. Additionally, the paper discusses the no-free-lunch theorem, another pivotal result in computational learning theory. By laying a rigorous theoretical foundation, this paper provides a comprehensive tutorial for understanding the principles underpinning machine learning.
Read full abstract