The impacts of climate change and human activities on water resources are a complex and integrated process and a key factor for effective water resource management in semi-arid regions, especially in relation to the Jinghe River basin (JRB), a major tributary of the Yellow River basin. The Sen’s slope estimator and the Mann–Kendall test (M–K test) are implemented to examine the spatial and temporal trends of the hydrological factors, while the elasticity coefficient method based on Budyko’s theory of hydrothermal coupling is employed to quantify the degree of runoff response to the various influencing factors, from 1971 to 2020. The results reveal that the runoff at Pingliang (PL), Jingchuan (JC), and Yangjiaping (YJP) hydrological stations shows an obvious and gradual decreasing trend during the study period, with a sudden change in about 1986, while precipitation shows a fluctuating and increasing trend alongside a potential evapotranspiration-induced fluctuating and decreasing trend. Compared to the previous period, a change of −29%, in relative terms, in the runoff at the YJP hydrological station is observed. The interaction of human activities and climate change in the watershed contributes to the sharp decrease in runoff, with precipitation, potential evapotranspiration, and human activities accounting for −14.3%, −15.1%, and 70.6% of the causes of the change in runoff, respectively. Human activities (e.g., construction of water conservancy projects), precipitation, and potential evapotranspiration are the main factors contributing to the change in runoff.
Read full abstract