Taking the Sanya River Mouth Channel project as a case study, this research explores the minimum brine temperature required for the pipe-jacking freezing method during staged freezing. Based on the heat transfer theory of porous media, a three-dimensional model of the actual working conditions was established using COMSOL 6.1 finite element software. By adjusting the brine cooling scheme, the development and distribution patterns of the freezing curtain under different brine temperatures were analyzed. The results indicate that as the staged freezing brine temperature increases, the thickness of the freezing curtain decreases linearly, and the closure of isotherms is inhibited. When the brine temperature is −8 °C, the thickness of the freezing curtain meets the minimum requirement and effectively achieves the freezing effect under both low and high seepage flow conditions. Additionally, seepage significantly affects the formation of the freezing curtain, causing it to shift towards the direction of seepage, with the degree of shift becoming more pronounced as the seepage velocity increases. When the seepage velocity is so high that the thickness of the freezing curtain on one side is less than 2 m, the impact of seepage on the freezing curtain can be reduced by decreasing the hydraulic head difference in the freezing area or by increasing the arrangement of freezing pipes, thereby enhancing the freezing effect.
Read full abstract