For a fixed positive integer n consider continuous functions K1,⋯\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$K_1,\\dots $$\\end{document}, Kn:[-1,1]→R∪{-∞}\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ K_n:[-1,1]\\rightarrow {{\\mathbb {R}}}\\cup \\{-\\infty \\}$$\\end{document} that are concave and real valued on [-1,0)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$[-1,0)$$\\end{document} and on (0, 1], and satisfy Kj(0)=-∞\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$K_j(0)=-\\infty $$\\end{document}. Moreover, let J:[0,1]→R∪{-∞}\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$J:[0,1]\\rightarrow {{\\mathbb {R}}}\\cup \\{-\\infty \\}$$\\end{document} be upper bounded and such that [0,1]\\J-1({-∞})\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$[0,1]\\setminus J^{-1}(\\{-\\infty \\})$$\\end{document} has at least n+1\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$n+1$$\\end{document} elements, but it is arbitrary otherwise. For x0:=0<x1<⋯<xn≤xn+1:=1\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$x_0:=0<x_1<\\dots < x_n \\le x_{n+1}:=1$$\\end{document}, so called nodes, and for t∈[0,1]\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$t\\in [0,1]$$\\end{document} consider the sum of translates function F(x1,…,xn,t):=J(t)+∑j=1nKj(t-xj)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$F(x_1,\\ldots ,x_n,t):=J(t)+\\sum _{j=1}^n K_j(t-x_j)$$\\end{document}, and the vector of interval maximum values mj:=mj(x1,…,xn):=maxt∈[xj,xj+1]F(x1,…,xn,t)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$m_j:=m_j(x_1,\\ldots ,x_n):=\\max _{t\\in [x_j,x_{j+1}]}F(x_1,\\ldots ,x_n,t)$$\\end{document} (j=0,1,…,n\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$j=0,1,\\ldots ,n$$\\end{document}). We describe the structure of the arising interval maxima as the nodes run over the n-dimensional simplex. Applications presented here range from abstract moving node Hermite–Fejér interpolation for generalized algebraic and trigonometric polynomials via Bojanov’s problem to more abstract results of interpolation theoretic flavour.