We extend (EUCLID Efficient Unsupervised Constitutive Law Identification and Discovery)—a data-driven framework for automated material model discovery—to pressure-sensitive plasticity models, encompassing arbitrarily shaped yield surfaces with convexity constraints and non-associated flow rules. The method only requires full-field displacement and boundary force data from one single experiment and delivers constitutive laws as interpretable mathematical expressions. We construct a material model library for pressure-sensitive plasticity models with non-associated flow rules in four steps: (1) a Fourier series describes an arbitrary yield surface shape in the deviatoric stress plane; (2) a pressure-sensitive term in the yield function defines the shape of the shear failure surface and determines plastic deformation under tension; (3) a compression cap term determines plastic deformation under compression; (4) a non-associated flow rule may be adopted to avoid the excessive dilatancy induced by plastic deformations. In contrast to traditional parameter identification methods, EUCLID is equipped with a sparsity promoting regularization to restrain the number of model parameters (and thus modeling features) to the minimum needed to accurately interpret the data, thus achieving a compromise between model simplicity and accuracy. The convexity of the learned yield surface is guaranteed by a set of constraints in the inverse optimization problem. We demonstrate the proposed approach in multiple numerical experiments with noisy data, and show the ability of EUCLID to accurately select a suitable material model from the starting library.
Read full abstract