The GH3 rat pituitary tumor cell line which secretes both growth hormone (GH) and prolactin (PRL) stopped releasing PRL when transplanted to animals; furthermore, it suppressed PRL production by the hosts' pituitary glands. When the same tumor was transferred back to cell culture, PRL production resumed. The PRL to GH ratio in cell culture medium and cells ranged from 5 to 1 while in the tumor and serum of the host animals it averaged 0.09 and 0.001, respectively. To investigate further this phenomenon, female rats were transplanted with GH3 tumors (T) and compared to intact normal (N) and to thyroidectomized (Tx) rats. T animals were larger and had splanchnomegaly but smaller pituitaries and thyroids. Serum PRL concentrations in the basal state were decreased, as were levels of triiodothyronine (T3), thyroxine (T4), and free T4 index. Despite reduced serum thyroid hormone concentrations, and in contrast to Tx animals, the serum thyrotropin (TSH) level in T rats was not elevated and they did not show a supranormal TSH response to thyrotropin-releasing hormone (TRH) administration. The PRL response to TRH in T animals was completely abolished while all N and Tx animals responded by a significant increase in serum PRL. Serum corticosteroids and estrogens were normal in T rats. Pituitary content of PRL was decreased and that of TSH increased in T rats. Tx animals, however, had a reduced pituitary content of PRL, TSH, and GH. When GH3 cells were grown in cell culture media containing serum from T animals, there was a reduction of PRL content in cells and released in the medium. Addition of T3 to the T serum did not alter its suppressive effect on PRL nor did rat GH added to N serum alter PRL production and release in vitro. In a preliminary experiment, rats injected ip with 50 mug hGH in two divided doses for eighteen days, suppressed serum T4 and T3 concentrations; pituitary content of TSH was significantly increased and that of PRL slightly decreased. Injection with 250 mug oPRL or saline, on the same schedule and for the same length of time, had no significant effect on the levels of serum thyroid hormones. Thus, GH, but also possibly other substance(s) secreted by GH3 tumors in vivo a) suppress the production of tumor and pituitary PRL; b) suppress the release of TSH, causing mild hypothyroidism; c) inhibit the PRL and TSH responses to TRH; and d) decrease the production of PRL in tissue culture. Although no simple and unifying theory could explain these findings, an hypothesis implicating somatomedin is presented.