In this work, we studied the possible estrogenic modulation of the effects of delta 9-tetrahydrocannabinol (THC) on mesolimbic dopaminergic activity, by examining the effects of an acute dose of this cannabinoid: (i) during the estrous cycle; (ii) after ovariectomy, chronic estrogen-replacement and tamoxifen (TMX)-induced blockade of estrogenic receptors; and (iii) combined with a single and physiological injection of estradiol to ovariectomized rats. THC significantly decreased the density of D 1 dopaminergic receptors and non-significantly increased the L-3,4-dihydroxyphenylacetic acid (DOPAC) content in the limbic forebrain of ovariectomized rats chronically replaced with estrogens. The decrease in D 1 receptors was also produced by TMX, whereas the coadministration of both THC and TMX did not lead to a major decrease. In addition to the trend of THC increasing DOPAC content, this cannabinoid was also able to increase the ratio between DOPAC and dopamine, although this last effect only occurred after coadministration of THC and TMX, which had been ineffective administered individually. All these effects were not seen when THC was administered to normal cycling rats during each phase of estrous cycle and to ovariectomized rats without chronic estrogen replacement or only submitted to a single and acute dose of estradiol. This observation might be related to the fact that the density of limbic cannabinoid receptors increased in chronic estrogen-replaced ovariectomized rats versus normal cycling, ovariectomized or acutely estrogen-treated ovariectomized rats. Interestingly, THC administration in ovariectomized rats was followed by a slight, although significant, increase in tyrosine hydroxylase activity, which was also observed after coadministration of THC with a short-time and acute dose of estradiol. In summary, THC stimulated the presynaptic activity of mesolimbic dopaminergic neurons, but accompanied by a decrease in their postsynaptic sensitivity. These effects did not appear in normal cycling rats being only evident after ovariectomy and chronic estrogen replacement, which might be related to changes in binding characteristics of cannabinoid receptors in this area. Moreover, some of them appeared after TMX-induced blockade of estrogenic cytosolic receptors, which likely suggests the existence of a certain estrogenic modulation of the actions of THC on mesolimbic neurons. On the contrary, coadministration of THC with a single and shortly tested dose of estradiol was always ineffective in modifying THC effects.
Read full abstract