BackgroundStem cell differentiation has opened up new avenues for disease treatment, tissue repair, and drug development in the study of regenerative medicine, and has huge application prospects. This study aimed to explore the mechanism of quercetin on the differentiation of mesenchymal stem cells (MSCs) into fibroblasts. MethodsIn this study, cell differentiation experiments and flow cytometry were used to detect the successful isolation of bone marrow MSCs from SD rats. Quercetin at 5, 10, and 20 μM was used as low, medium, and high doses to intervene in MSCs. The cell viability changes of ligament fibroblasts at 24, 48, and 72 hours after quercetin treatment were detected using a CCK-8 cell counting kit. Cell proliferative capacity was determined by flow cytometry. RT-qPCR measured the relative expression levels of TGF-β1, IGF-1, COL-Ⅰ, COL-Ⅲ, FN (fibronectin), and TNMD (Tenomodulin) in different experimental groups. Molecular docking experiments were conducted to explore the binding effect of quercetin on TGF-β1 and IGF-1 proteins. ResultsFlow cytometry verified the successful isolation of MSCs, which had high expression of CD29 and CD73, while lower expression of CD90 and CD45. Experimental results show that low and medium doses of quercetin can enhance cell proliferation, while high doses have no significant effect on cells. Detection of cell proliferation through flow cytometry yielded similar results to CCK-8. Transwell experiments have shown that low and medium doses of quercetin can increase cell migration ability. In addition, RT-qPCR detection showed that quercetin can increase the mRNA expression of TGF-β1 and IGF-1, and promote the expression of COL-Ⅰ, COL-Ⅲ, FN, and TNMD genes in ligament fibroblasts. Molecular docking results showed that quercetin can bind firmly to TGF-β1 and IGF-1. ConclusionOverall, this study revealed the morphological characteristics and identification of MSCs, as well as the regulatory mechanism of quercetin on the behavior of ligament fibroblasts. Quercetin affects the proliferation and gene expression of ligament fibroblasts by regulating the expression of TGF-β1 and IGF-1, which may provide a new perspective for biomedical research on the skeletal system.
Read full abstract