It has been known for some time that zinc, as well as most transition metal ions, is capable of binding to the DNA bases. However, little is known about the presence and distribution of metal binding sites along naturally occurring genomic DNA molecules. In this paper, the interaction of zinc with the Xenopus 5S-RNA gene has been studied and several metal binding sites have been identified on the basis of the changes in chemical reactivity observed in the presence of the metal. The strongest zinc-binding sites of the Xenopus 5S-RNA gene correspond to GGG trinucleotide repeats. Some GG dinucleotides also show a significant affinity for zinc. Interestingly, the binding site for TFIIIA, a zinc-finger transcription factor, contains several sites with strong zinc affinity. In particular, a TGGGA sequence which is essential for the binding of TFIIIA shows the strongest affinity for zinc. The conformational properties of this DNA sequence, together with the high electronegative potential of GGG runs, is likely to determine its strong affinity for zinc. The possible biological relevance of these results is discussed.
Read full abstract