Transfer learning involves using previously learnt knowledge of a model task in addressing another task. However, this process works well when the tasks are closely related. It is, therefore, important to select data points that are closely relevant to the previous task and fine-tune the suitable pre-trained model's layers for effective transfer. This work utilises the least divergent textural features of the target datasets and pre-trained model's layers, minimising the lost knowledge during the transfer learning process. This study extends previous works on selecting data points with good textural features and dynamically selected layers using divergence measures by combining them into one model pipeline. Five pre-trained models are used: ResNet50, DenseNet169, InceptionV3, VGG16 and MobileNetV2 on nine datasets: CIFAR-10, CIFAR-100, MNIST, Fashion-MNIST, Stanford Dogs, Caltech 256, ISIC 2016, ChestX-ray8 and MIT Indoor Scenes. Experimental results show that data points with lower textural feature divergence and layers with more positive weights give better accuracy than other data points and layers. The data points with lower divergence give an average improvement of 3.54% to 6.75%, while the layers improve by 2.42% to 13.04% for the CIFAR-100 dataset. Combining the two methods gives an extra accuracy improvement of 1.56%. This combined approach shows that data points with lower divergence from the source dataset samples can lead to a better adaptation for the target task. The results also demonstrate that selecting layers with more positive weights reduces instances of trial and error in selecting fine-tuning layers for pre-trained models.
Read full abstract