This paper proposes a text localization method with multi-features based on cascade classifier for a variety of web images. Specifically, first, the original image is divided into sub-images with different scales, which form more satisfactory edge image blocks after being pretreated respectively; then, the researchers determine in the classifier whether the text area is contained in the candidate image blocks according to the edge connectivity characteristics, stroke density characteristics and text arrangement characteristics of text area; finally, the location results of sub-images with different scales are mixed together to obtain the final result. The experiments show that this location method has the relatively high precision and recall rate and quite strong robustness, which is suitable for a variety of web images.
Read full abstract