Stylistic text can be found on sign boards, street and organizations boards and logos, bulletin boards, announcements, advertisements, dangerous goods plates, warning notices, etc. In stylistic text images, text-lines within an image may have different orientations such as curved in shape or not be parallel to each other. As a result, extraction and subsequent recognition of individual text-lines and words in such images is a difficult task. In this paper, we propose a novel scheme for straightening of curved text-lines using the concept of dilation, flood-fill, robust thinning, and B-spline curve-based fitting. In the proposed scheme, at first, dilation is applied on individual text-lines to cover the area within a certain boundary. Next, thinning is applied to get the path of the text, approximate the path using the B-spline, find the angle between the normal at a point on the curve and the vertical line, and finally visit each point on the text and rotate by their corresponding angles. The proposed methodology is tested on variety of text images containing text-lines in Devanagari, English, and Chinese scripts which is evaluated on the basis of visual perception and the mean square error (MSE) calculation. MSE is calculated by line fitting applied on input and output images. On the basis of evaluation results obtained in our experiments, the proposed method is promising.