The salt metathesis reaction of Na(pmtz)·H2O [pmtz- = 5-(pyrimidyl)tetrazolate] and PuBr3·nH2O in an aqueous media leads to the formation of the mononuclear compound [Pu(pmtz)3(H2O)3]·(3 + n) H2O (Pu1, n = ∼8) that is isotypic with the lanthanide compounds [Ln(pmtz)3(H2O)3]·(3 + n) H2O (Ln = Ce-Nd). Dissolution and recrystallization of Pu1 in water yields the dinuclear compound {[Pu(pmtz)2(H2O)3]2(μ-pmtz)}2(pmtz)2·14H2O (Pu2), which is isotypic with the lanthanide compounds {[Ln(pmtz)2(H2O)3]2(μ-pmtz)}2(pmtz)2·14H2O (Ln = Nd and Sm). Like their nine-coordinate ionic radii, the M-O and M-N bond lengths in Pu1/Pu2 and Nd1/Nd2, respectively, are within error of one another. The Laporte-forbidden 4f → 4f and 5f → 5f transitions are also assigned in the UV-vis-NIR spectra for these f-element tetrazolate coordination compounds.
Read full abstract