The poor operational stability of electrolytes is a persistent impediment in building redox flow battery technology; choosing suitable stability additives is usually the research direction to solve this problem. The effects of five phosphate containing additives (including 1-hydroxyethylidene-1,1-diphosphonic acid (HEDP), hexamethylene diamine tetramethylene phosphonic acid (HDTMPA), amino trimethylene phosphonic acid (ATMPA), sodium ethylenediamine tetramethylene phosphonate (EDTMPS), and diethyl triamine pentamethylene phosphonic acid (DTPMP)) on the thermal stability and electrochemical performance of the positive electrolyte of vanadium redox flow battery were investigated. With 0.5 wt% addition, most of the selected additives were able to improve the thermal stability of the electrolyte. HEDP and HDTMPA extended the stability time of the pentavalent vanadium electrolyte at 50 °C from 5 days (blank sample) to 30 days and 15 days, respectively. The electrochemical performance of the electrolyte was further investigated by cyclic voltammetry, steady state polarization, and electrochemical impedance spectroscopy tests. It was found that most of the additives enhanced the electrochemical activity of the positive electrolyte, and the diffusion coefficients, exchange current densities, and reaction rate constants of V(IV) species became larger with the addition of these additives. It is verified that the thermal stability and electrochemical stability of the electrolyte are significantly improved by the combination of ATMPA + HEDP or ATMPA + HDTMPA. This study provides a new approach to improve the stability of the positive electrolyte for vanadium redox flow battery.