Novel elastomer/methacrylate systems have been developed for potential soft prosthetic applications. Mixtures of varying compositions of an isoprene–styrene copolymer elastomer and tetrahydrofurfuryl methacrylate (SIS/THFMA) formed one-gel systems and were heat cured with a peroxide initiator. The blends were characterised in terms of sorption in deionised water and simulated body fluids (SBF), tensile properties and viscoelastic parameters of storage modulus and tan δ, as well as glass transition temperatures using dynamic mechanical analysis (DMA). DMA data gave two distinct peaks in tan δ, a lower temperature transition due to the isoprene phase in SIS and one at high temperature thought to be a combination of THFMA and the styrene phase in SIS. The tensile data showed a clear phase inversion within the mid range compositions changing from plastic to elastomeric behaviour. The sorption studies in deionised water showed a two stage uptake with an initial Fickian region that was linear to t 1/2 followed by a droplet growth/clustering system. The slope of the linear region was dependent on the composition ratio. The extent of overall uptake was osmotically dependent as all materials equilibrated at a much lower uptake in SBF. The diffusion coefficients were found to be concentration dependent.
Read full abstract