Aluminium substituted cobalt-nickel ferrite nanoparticles were synthesized by citrate gel auto-combustion method followed by annealing at 1000 °C for 1 h in air. Scanning electron micrographs of all the samples show crystalline particles of irregular morphology with a small variation in particle sizes (~ 110–160 nm). From the analysis of the X-ray diffraction results we observed that the unit cell parameter decreases linearly with increase in aluminium concentration due to the smaller ionic radius of the Al3+ ions substituting the other cations such as Co2+, Ni2+ and Fe3+ ions in the compounds. The room temperature Mössbauer spectra of the samples show Zeeman split sextet patterns corresponding to the tetrahedral (Th) and octahedral (Oh) interstitial iron (Fe3+) cations. The observed magnetic hyperfine field (Bhf) decreases with increase in Al-concentration due to the distribution of diamagnetic Al3+ in the environment of 57Fe probe atoms. The saturation magnetization measured by Vibrating Sample Magnetometer (VSM) shows a similar trend like that of Bhf. The distributions of the cations obtained from the Rietveld refinement and Mössbauer spectroscopy results indicate an increase in Fe3+(Th)/Fe3+(Oh) occupancy-ratio on increasing Al3+ concentration, and Ni2+ cations prefer the octahedral site, whereas Co2+ and Al3+ ions redistribute themselves in tetrahedral and octahedral sites, in the ratio 2:3.
Read full abstract