The Xenopus Eleutheroembryonic Thyroid Assay (XETA, OECD TG 248) was established as an alternative to the Amphibian Metamorphosis Assay (AMA, OECD TG 231) for the analysis of (anti-)thyroid activity of chemicals. The XETA is a New Approach Method (NAM) since the embryonic life stages used in the assay are not yet feeding independently, which renders the assay to be considered a non-animal test under many national laws. Physiologically, the used embryos are not fully developed yet, and thus there are limitations to the XETA for detecting certain mechanisms along the hypothalamic-pituitary-thyroid (HPT) axis. However, the plasmatic transport inhibition of thyroid hormone should physiologically be detectable in the XETA but has not yet been sufficiently investigated. Here, we tested three substances that are known, amongst others, to inhibit thyroid hormone transport by competitive binding to transthyretin in mammalian studies, namely pentachlorophenol (PCP), tetrabromo bisphenol A (TBBPA), and mefenamic acid. Following the test guideline, X. laevis eleutheroembryos of Nieuwkoop-Faber stage 45 were exposed for 72h at 21°C in 6-well plates to different concentrations of the test substances. For PCP and TBBPA, the XETA showed a decrease in fluorescence intensity, which would be expected for thyroid hormone transport inhibition amongst other, similar modes of action, while for the lower potency substance mefenamic acid, a trend was visible, but no statistically significant inhibition was detected. Overall, the results indicate that in the XETA, the plasmatic transport inhibition of thyroid hormone should be detectable alongside other inhibitory modes of action on the HPT axis.