This paper presents a stochastic approach for modeling the turbulent airwake suitable for real-time simulation of the helicopter–ship dynamic interface. This approach relies on the measurements of unsteady loads collected during a wind-tunnel test campaign with a scaled helicopter operating over the deck of simple frigate shape 1. Power spectral densities of the measured aerodynamic loads combined with the estimated frequency response functions are used to find, through an optimization algorithm, a model of airwake spectra over the range of frequencies which mainly affects the pilot workload during shipboard operations. Then, a set of autoregressive filters is designed for every particular rotor position and wind-over-deck condition, so that when driven by white noise, the spectrum of the output will reproduce those obtained from the optimization. This approach is applied to three different tested wind directions and three rotor positions by implementing the autoregressive filters into the multibody model of the experimental rotor. Frequency response analysis of the aerodynamic loads demonstrates that the turbulent airwake model obtained from the experimental data can predict the unsteadiness of loads comparable to those measured in the wind tunnel across the bandwidth of interest for pilot activities. The identified airwake models could be applied to a full-scale model to simulate the unsteady loads effectively experienced by the helicopter during a ship landing flight.