The bright colors of Alpine leaf beetles (Coleoptera, Chrysomelidae) are thought to act as aposematic signals against predation. Within the European Alps, at least six species display a basal color of either blue or green, likely configuring a classic case of müllerian mimicry. In this context, intra-population color polymorphism is paradoxical as the existence of numerous color morphs might hamper the establishment of a search image in visual predators. Assortative mating may be one of the main factors contributing to the maintenance of polymorphic populations. Due to the marked iridescence of these leaf beetles, the perceived color may change as the viewing or illumination angle changes. The present study, conducted over three years, involved intensive sampling of a population of Oreina gloriosa from the Italian Alps and applied colorimetry and a decision tree method to identify the color morphs in an objective manner. The tertiary sex ratio of the population was biased in favor of males, suggesting that viviparous females hide to give birth. Seven color morphs were identified, and their frequencies varied significantly over the course of the study. Three different analyses of mating (JMating, QInfomating, and Montecarlo simulations) recognized a general trend for random mating which coexists with some instances of positive and negative assortative mating. This could help explain the pre-eminence of one morph (which would be favored because of positive selection due to positive assortative mating) in parallel with the persistence of six other morphs (maintained due to negative assortative mating).
Read full abstract