Heritage Building Information Modeling (HBIM) is an essential technology for heritage documentation, conservation, and management. It enables people to understand, archive, advertise, and virtually reconstruct their built heritage. Creating highly accurate HBIM models requires the use of several reality capture tools, such as terrestrial laser scanning (TLS), photogrammetry, unmanned aerial vehicles (UAV), etc. However, the existing literature did not explicitly review the applications and impacts of TLS in implementing HBIM. This paper uses the PRISMA protocol to present a systematic review of TLS utilization in capturing reality data in order to recognize the status of applications of TLS for HBIM and identify the knowledge gaps on the topic. A thorough examination of the 58 selected articles revealed the state-of-the-art practices when utilizing static TLS technology for surveying and processing captured TLS data for developing HBIM models. Moreover, the absence of guidelines for using static TLS surveys for HBIM data acquisition, the lack of robust automated frameworks for producing/transferring 3D geometries and their attributes from TLS data to BIM entities, and the under-utilized application of TLS for long-term monitoring and change detection were identified as gaps in knowledge. The findings of this research provide stakeholders with a good grasp of static TLS for HBIM and therefore lay the foundation for further research, strategies, and scientific solutions for improving the utilization of TLS when documenting heritage structures and developing HBIM.