Nickel-based superalloys are extensively utilized in aerospace engines, marine gas turbines, and other environments with severe operating conditions. The phase relations of the Ni-Mo-Y ternary system were experimentally studied across the entire composition range at 800 °C and 1000 °C using scanning electron microscopy (SEM) coupled with energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). Thirteen three-phase regions were confirmed at 800 °C, and eleven three-phase regions were observed at 1000 °C. No ternary compound was observed at these temperatures. In addition, the experimental results indicate that molybdenum (Mo) has almost no solubility in the binary compounds found in the Ni-Y binary system. Furthermore, the primary solidification phases and the solidification process of typical alloys were investigated, and three different primary solidification phases were found. Based on the experimental results, thermodynamic calculations for the Ni-Mo-Y system were performed through the CALPHAD technique. The experimental results agree well with the calculated, a set of self-consistent thermodynamic parameters for the Ni-Mo-Y ternary system was obtained in the present work.
Read full abstract