In [H. Safa and H. Arabyani, On c-nilpotent multiplier and c-covers of a pair of Lie algebras, Commun. Algebra 45(10) (2017), 4429–4434], we characterized the structure of the c-nilpotent multiplier of a pair of Lie algebras in terms of its c-covering pairs and discussed some results on the existence of c-covers of a pair of Lie algebras. In the present paper, it is shown under some conditions that a relative c-central extension of a pair of Lie algebras is a homomorphic image of a c-covering pair. Moreover, we prove that a c-cover of a pair of finite dimensional Lie algebras, under some assumptions, has a unique domain up to isomorphism and also that every perfect pair of Lie algebras admits at least one c-cover. Finally, we discuss a result concerning the isoclinism of c-covering pairs.