Although the construction of heterojunction has been used in photoelectrochemical (PEC) biosensors, their potential for tunable optical properties has not been deeply explored. Based on the fact that a type-II heterojunction and Z-scheme heterojunction have the same energy band structure, effective alteration of the electron transfer pathway has been achieved by introducing unique photoactive materials into the system and exploiting the interactions between the photomaterials. Based on this, we reported a novel polarity-switchable dual-mode sensor for fat mass and obesity-associated (FTO) protein analysis. Specifically, the MgIn2S4/Bi2MoO6/Bi2S3 dual type-II heterojunction was used as the sensing interface in concert with the rolling circle amplification, CRISPR/Cas12, and terminal DNA transfer enzyme multiamplification strategies, and finally, Cu2O was captured at the sensing interface. Due to the matched energy band, the introduction of Cu2O effectively changed the electron transfer pathway and realized the conversion from a dual type-II heterojunction to a dual Z-scheme heterojunction. It caused the switch of the photocurrent from the anode to the cathode. The developed PEC method showed high sensitivity and selectivity for FTO protein detection in the range of 0.0005-500 μg/L. In addition, based on the peroxidase-like activity of Cu2O to catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine by H2O2, the electrode system also achieved the colorimetric detection of FTO protein using the naked eye with the change of the color of the detection solution from colorless to blue. The detection range was from 0.05 to 500 μg/L. This work developed a photoelectrochemical-colorimetric biosensing platform with consciously designed semiconductor structures, revealing the potential of semiconductor-structured transformations in future sensing fields.
Read full abstract