Apoptosis plays an important role in atherosclerosis. The factors regulating this process are not well defined. We examined the relation of apoptotic cells with the terminal complement complex C5b-9 in human atherosclerotic lesions. The extent of apoptosis was determined using TdT dUTP nick-end labeling (TUNEL) and immunohistochemistry of apoptosis regulators caspase-3, caspase-9, Bax, and Bcl-2. C5b-9 was localized by immunohistochemistry and immunoelectron microscopy. The apoptotic index was higher in fibrous plaques when compared with intimal fatty streaks and intimal thickenings. Bax expression was present in TUNEL+ apoptotic cells, and Bcl-2 was rarely present in the atherosclerotic wall. Active caspase 9 and caspase 3 deposits were present in the same areas, suggesting an involvement of the mitochondrial pathway. C5b-9 deposits colocalized with TUNEL+ cells, and the percent of double-positive cells was 2% in fatty streaks, 12% in intimal thickenings, and 35% in fibrous plaques. Colocalization of apoptotic cells with C5b-9 was also confirmed by immunoelectron microscopy. In conclusion, some apoptotic cells carry C5b-9 deposits, suggesting that complement might be activated by apoptotic cells and involved in the promotion of apoptosis, contributing to the progression of atherosclerotic lesions.