PM2.5 is an important indicator reflecting air quality variations. Currently, environmental pollution related issues have become more severe that significantly threaten human health. The current study is an attempt to analyze the spatio-dynamic characteristics of PM2.5 in Nigeria based on the directional distribution and trend clustering analysis from 2001 to 2019. The results indicated that PM2.5 concentration increased in most of the Nigerian states, particularly in mid-northern and southern states. The lowest PM2.5 concentration in Nigeria is even beyond the interim target-1 (35 μg/m3) of the WHO. During the study period, the average PM2.5 concentration increased at a growth rate of 0.2 μg/m3/yr from 69 μg/m3 to 81 μg/m3. The growth rate varied from region to region. Kano, Jigawa, Katsina, Bauchi, Yobe, and Zamfara experienced the fastest growth rate of 0.9 μg/m3/yr with 77.9 μg/m3 mean concentration. The median center of the national average PM2.5 moved toward the north indicating the highest PM2.5 concentration in northern states. The Saharan desert dust is the dominant source of PM2.5 in northern areas. Moreover, agricultural practices and deforestation activities along with low rainfall increase desertification and air pollution in these regions. Health risks increased in most of the mid-northern and southern states. The extent of ultra-high health risk (UHR) areas corresponding to the 8×104−7.3×106 μg⋅person/m3 increased from 1.5% to 2.8%. Mainly Kano, Lagos, Oyo, Edo, Osun, Ekiti, southeastern Kwara, Kogi, Enugu, Anambra, Northeastern Imo, Abia, River, Delta, northeastern Bayelsa, Akwa Ibom, Ebonyi, Abuja, Northern Kaduna, Katsina, Jigawa, central Sokoto, northeastern Zamfara, central Borno, central Adamawa, and northwestern Plateau are under UHR areas.
Read full abstract