IntroductionEfficacy of repetitive Transcranial Magnetic Stimulation (rTMS) targeting the temporo-parietal junction (TPJ) for the treatment of auditory verbal hallucinations (AVH) remains under debate. We assessed the influence of a 1Hz rTMS treatment on neural networks involved in a cognitive mechanism proposed to subserve AVH. MethodsPatients with schizophrenia (N=24) experiencing medication-resistant AVH completed a 10-day 1Hz rTMS treatment. Participants were randomized to active stimulation of the left or bilateral TPJ, or sham stimulation. The effects of rTMS on neural networks were investigated with an inner speech task during fMRI. Changes within and between neural networks were analyzed using Independent Component Analysis. ResultsrTMS of the left and bilateral TPJ areas resulted in a weaker network contribution of the left supramarginal gyrus to the bilateral fronto-temporal network. Left-sided rTMS resulted in stronger network contributions of the right superior temporal gyrus to the auditory-sensorimotor network, right inferior gyrus to the left fronto-parietal network, and left middle frontal gyrus to the default mode network. Bilateral rTMS was associated with a predominant inhibitory effect on network contribution. Sham stimulation showed different patterns of change compared to active rTMS. ConclusionrTMS of the left temporo-parietal region decreased the contribution of the left supramarginal gyrus to the bilateral fronto-temporal network, which may reduce the likelihood of speech intrusions. On the other hand, left rTMS appeared to increase the contribution of functionally connected regions involved in perception, cognitive control and self-referential processing. These findings hint to potential neural mechanisms underlying rTMS for hallucinations but need corroboration in larger samples.
Read full abstract