Understanding the spatial and temporal patterns of forest fires, along with the key factors influencing their occurrence, and accurately forecasting these events are crucial for effective forest management. In the Central-South region of China, forest fires pose a significant threat to the ecological system, public safety, and economic stability. This study employs Geographic Information Systems (GISs) and the LightGBM (Light Gradient Boosting Machine) model to identify the determinants of forest fire incidents and develop a predictive model for the likelihood of forest fire occurrences, in addition to proposing a zoning strategy. The purpose of the study is to enhance our understanding of forest fire dynamics in the Central-South region of China and to provide actionable insights for mitigating the risks associated with such disasters. The findings reveal the following: (i) Spatially, fire incidents exhibit significant clustering and autocorrelation, highlighting areas with heightened likelihood. (ii) The Central-South Forest Fire Likelihood Prediction Model demonstrates high accuracy, reliability, and predictive capability, with performance metrics such as accuracy, precision, recall, and F1 scores exceeding 85% and AUC values above 89%, proving its effectiveness in forecasting the likelihood of forest fires and differentiating between fire scenarios. (iii) The likelihood of forest fires in the Central-South region of China varies across regions and seasons, with increased likelihood observed from March to May in specific provinces due to various factors, including weather conditions and leaf litter accumulation. Risks of localized fires are noted from June to August and from September to November in different areas, while certain regions continue to face heightened likelihood from December to February.
Read full abstract