Calmodulin (CaM) acts as a primary mediator of calcium signaling by interacting with target proteins. We have previously shown that nuclear CaM is critical for cell cycle progression using a transgene containing four repeats of a CaM inhibitor peptide and nuclear targeting signals (J. Wang et al., J. Biol. Chem. 270 (1995) 30245–30248; Biochim. Biophys. Acta 1313 (1996) 223–228). To evaluate the role of CaM in the nucleus specifically during S phase of the cell cycle, a motif which stabilizes the mRNA only during S phase was included in the transgene. The CaM inhibitor mRNA transcript contains a self-annealing stem-loop derived from histone H2B at the 3′ end. This structure provides stability of the mRNA only during S phase, thereby restricting CaM inhibitor expression to S phase. The inhibitor accumulates in the nucleus, particularly in the nucleoli. Flow cytometric analysis demonstrated that the CaM inhibitor is expressed in S and G2. Transfected cells show growth inhibition and a reduction in DNA synthesis. The CaM inhibitor peptide is a versatile reagent that allows spatial as well as temporal dissection of calmodulin function.
Read full abstract