In the temporal database literature, every fact stored in a database may be equipped with two temporal dimensions: the valid time, which describes the time when the fact is true in the modeled reality, and the transaction time, which describes the time when the fact is current in the database and can be retrieved. Temporal functional dependencies (TFDs) add valid time to classical functional dependencies (FDs) in order to express database integrity constraints over the flow of time. Currently, proposals dealing with TFDs adopt a point-based approach, where tuples hold at specific time points, to express integrity constraints such as "for each month, the salary of an employee depends only on his role". To the best of our knowledge, there are no proposals dealing with interval-based temporal functional dependencies (ITFDs), where the associated valid time is represented by an interval and there is the need of representing both point-based and interval-based data dependencies. In this paper, we propose ITFDs based on Allen's interval relations and discuss their expressive power with respect to other TFDs proposed in the literature: ITFDs allow us to express interval-based data dependencies, which cannot be expressed through the existing point-based TFDs. ITFDs allow one to express constraints such as "employees starting to work the same day with the same role get the same salary" or "employees with a given role working on a project cannot start to work with the same role on another project that will end before the first one". Furthermore, we propose new algorithms based on B-trees to efficiently verify the satisfaction of ITFDs in a temporal database. These algorithms guarantee that, starting from a relation satisfying a set of ITFDs, the updated relation still satisfies the given ITFDs.