The template method is an effective means to improve the specific surface area and porosity of biochar, but the synthesis of template agents and the way they are integrated with biomass materials still need further development. Therefore, the free Pseudomonas sp. Y1 was used to synthesize calcium-precipitated nanoparticles (CPN) on sludge as a fused template skeleton to enlarge the surface area of sludge biochar facilitating the adsorption of tetracycline (TC) in this work. The modified biochar (FBC) showed excellent specific surface area (448.55 m2 g−1) and porosity (0.0053 cm³ g−1), stable morphological structure, abundant active functional groups, and appreciable adsorption capacity (65.43 mg g−1) based on several characterization and adsorption experiments. Moreover, the adsorption model postulated that the removal of TC is mainly a chemisorption-based heat-trapping, disordered multilayer interaction. In detail, this process involved the joint contribution from electrostatic interactions, ligand exchange, hydrogen bonding, π-π bonding, complexation, and pore filling. Meanwhile, the adaptability and stability of FBC were examined by pH and coexisting substances. This template skeleton induced by microorganisms can provide new insight into the modification of biochar with the template method.
Read full abstract