Abstract

In a conventional optical motion capture (MoCap) workflow, two processes are needed to turn captured raw marker sequences into correct skeletal animation sequences. Firstly, various tracking errors present in the markers must be fixed ( cleaning or refining ). Secondly, an agent skeletal mesh must be prepared for the actor/actress, and used to determine skeleton information from the markers ( re-targeting or solving ). The whole process, normally referred to as solving MoCap data, is extremely time-consuming, labor-intensive, and usually the most costly part of animation production. Hence, there is a great demand for automated tools in industry. In this work, we present MoCap-Solver, a production-ready neural solver for optical MoCap data. It can directly produce skeleton sequences and clean marker sequences from raw MoCap markers, without any tedious manual operations. To achieve this goal, our key idea is to make use of neural encoders concerning three key intrinsic components: the template skeleton, marker configuration and motion, and to learn to predict these latent vectors from imperfect marker sequences containing noise and errors. By decoding these components from latent vectors, sequences of clean markers and skeletons can be directly recovered. Moreover, we also provide a novel normalization strategy based on learning a pose-dependent marker reliability function, which greatly improves system robustness. Experimental results demonstrate that our algorithm consistently outperforms the state-of-the-art on both synthetic and real-world datasets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.